autocat.learning.predictors
Predictor
Source code in autocat/learning/predictors.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
|
__init__(regressor=None, featurizer=None)
Constructor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
regressor |
Regressor object that can be used to make predictions
(e.g. from scikit-learn) with |
None
|
featurizer:
Featurizer
to be used for featurizing the structures
when training and predicting.
N.B: If you want to make any changes to the parameters
of this object after instantiation, please do so as follows:
predictor.featurizer = updated_featurizer
Source code in autocat/learning/predictors.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
|
copy()
Returns a copy
Source code in autocat/learning/predictors.py
93 94 95 96 97 98 99 100 |
|
fit(training_structures, y)
Given a list of structures and labels will featurize and train a regression model
Parameters:
Name | Type | Description | Default |
---|---|---|---|
training_structures |
List[Union[Atoms, str]]
|
List of structures to be trained upon |
required |
y: Numpy array of labels corresponding to training structures of shape (# of training structures, # of targets)
Returns:
Name | Type | Description |
---|---|---|
trained_model | Trained |
Source code in autocat/learning/predictors.py
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
|
predict(testing_structures)
From a trained model, will predict on given structures
Parameters:
Name | Type | Description | Default |
---|---|---|---|
testing_structures |
List[Atoms]
|
List of Atoms objects to make predictions on |
required |
Returns:
Name | Type | Description |
---|---|---|
predicted_labels | List of predicted labels for each input structure |
unc:
List of uncertainties for each prediction if available.
Otherwise returns None
Source code in autocat/learning/predictors.py
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
|
score(structures, labels, metric='mae', return_predictions=False, **kwargs)
Returns a prediction score given the actual corrections.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
structures |
List[Atoms]
|
List of Atoms objects of structures to be tested on |
required |
labels: Labels for the testing structures
metric: How the performance metric should be calculated Options: - mae - mse
return_predictions: Bool indicating whether the predictions and uncertainties should be returned in addition to the score
Returns:
Name | Type | Description |
---|---|---|
score | Float of calculated test score on the given data |
Source code in autocat/learning/predictors.py
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
|
write_json_to_disk(write_location='.', json_name=None)
Writes Predictor
to disk as a json
Source code in autocat/learning/predictors.py
122 123 124 125 126 127 128 129 130 131 132 133 134 |
|